Closing Tue: TN 4 Closing Thu: TN 5

Entry Tasks (Sigma Notation Practice)

1. Differentiate and integrate:
$f(x)=\sum_{k=2}^{5} \frac{(-1)^{k}}{k^{3}} x^{k}=\frac{1}{8} x^{2}-\frac{1}{27} x^{3}+\frac{1}{64} x^{4}-\frac{1}{125} x^{5}$
2. Combine

$$
5 \sum_{k=2}^{4} k^{2} x^{k}-6 \sum_{k=2}^{4} \frac{1}{k!} x^{k}
$$

TN 5: Using Taylor Series

Here are the 6 series you can quote:
$e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$,
$\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}$, for all x
$\cos (x)=\sum_{\substack{k=0 \\ \infty}}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}, \quad$ for all x
$\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \quad, \quad$ for $-1<\mathrm{x}<1$
$-\ln (1-x)=\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1},-1<\mathrm{x}<1$
$\arctan (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1},-1<\mathrm{x}<1$

Tools for using Taylor Series

1. Substitute (replace x)
2. Integrate

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
$$

3. Differentiate

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

4. Combine
$\sum_{k=0}^{\infty} k x^{k}-3 \sum_{k=0}^{\infty} \frac{1}{k!} x^{k}=\sum_{k=0}^{\infty}\left(k-\frac{3}{k!}\right) x^{k}$

Substitution Questions: Find the Taylor series based at 0, find the first three nonzero terms and give the interval of convergence.
(a) $f(x)=3 e^{2 x}$
(b) $g(x)=\frac{5}{1-4 x}$
(c) $h(x)=\frac{3}{2 x+1}$

Combining: Find the Taylor series based at 0 , find the first three nonzero terms and give the interval of convergence
(a) $y=7+3 x^{5} e^{2 x}$
(b) $y=\frac{5}{1-4 x}-\frac{3}{2 x+1}$
(c) $y=\cos ^{2}(x)$ (Hint: Half-angle)

Integrating Applications
(a) Give the first three nonzero terms of the Taylor Series for

$$
\int_{0}^{x} 7+3 t^{5} e^{2 t} d t
$$

(b) Find a Taylor series for:

$$
A(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t
$$

