
Closing Tue: TN 4  Closing Thu: TN 5 

Entry Tasks (Sigma Notation Practice) 
1. Differentiate and integrate: 

 
 
 
 
 
 
 
 
 

2. Combine 
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TN 5: Using Taylor Series 
Here are the 6 series you can quote: 

𝑒𝑥 = ∑
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  ,                            for all x 
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Tools for using Taylor Series 
1. Substitute (replace x) 
2. Integrate 

∫ 𝑥𝑛 𝑑𝑥 =
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3. Differentiate  
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4. Combine 
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Substitution Questions:  Find the Taylor 
series based at 0, find the first three nonzero 
terms and give the interval of convergence. 
 

(a) 𝑓(𝑥) = 3𝑒2𝑥      
 
 
 
 

(b) 𝑔(𝑥) =
5

1−4𝑥
 

 
 
 
 

(c) ℎ(𝑥) =
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Combining:  Find the Taylor series based at 
0, find the first three nonzero terms and give 
the interval of convergence 

 

(a) 𝑦 = 7 + 3𝑥5𝑒2𝑥      
 
 
 
 
 
 
 

(b) 𝑦 =
5
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−
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(c) 𝑦 = cos2 (𝑥)  (Hint: Half-angle) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Integrating Applications 
(a) Give the first three nonzero terms 

of the Taylor Series for  

∫ 7 + 3𝑡5𝑒2𝑡𝑑𝑡

𝑥

0

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(b)   Find a Taylor series for: 

𝐴(𝑥) =  ∫
sin (𝑡)

𝑡
𝑑𝑡

𝑥
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